Enrollment No:	Exam Seat No:	

C. U. SHAH UNIVERSITY

Winter Examination-2019

Subject Name: Mathematical Concepts for Computer Science

Subject Code :4CS01IFM2 Branch: B.Sc.I.T.

Semester: 1 Date: 21/11/2019 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Attempt the following questions: Q-1 [14]

- a) Define: Empty set (01)
- **b)** What is the cardinality of a set $\{1,3,7,9,11,14\}$? (01)
- c) Give one example of infinite set. (01)
- **d)** Check whether the function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^2$ is even or (01)odd?
- e) Let A and B be two sets, let |A| = 5, |B| = 3 and $|A \cap B| = 2$ then find (01) $|A \cup B|$.
- f) Define: Increasing function (01)
- **g**) Let $A = \{6,8,11\}$, $B = \{2,3,8,11\}$ then find $A \cup B$. (01)
- **h**) Let $A = \begin{bmatrix} 7 & 4 \\ 6 & 9 \end{bmatrix}$, find minor of the element '6'. (01)
- (01)
- $\lim_{x \to 0} \cos x = \underline{\qquad}$ $\lim_{x \to 0} \frac{\sin 3x}{x} = \underline{\qquad}$ (01)
- **k)** What do you mean by $x \to \infty$? (01)
- 1) Define: Lower Triangular Matrix (01)
- **m**) Give example of one-one function. (01)
- Let $A = \begin{bmatrix} 3 & 4 \\ 8 & -3 \end{bmatrix}$, then tr A =____ (01)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions [14]

- Let $A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 0 \\ -1 & 3 & -2 \end{bmatrix}$, find A^{-1} if possible. (06)
- Verify $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for the following sets: (04) $A = \{1, 2, ..., 10\}, B = \{6, 8, 2, 10\}, C = \{2, 3, 8, 10, 11\}$
- c) Verify De-Morgan's Law for the following sets: (04) $U = \{1, 2, ..., 15\}, A = \{1, 2, 3, 8, 14, 15\}$ and $B = \{4, 8, 10, 14\}$

Q-3		Attempt all questions		
	a)	Check whether the function $f: \mathbf{R} \to \mathbf{R}$ is even, odd, neither even nor	(06)	
		odd?		
		$i) \qquad f(x) = x+4 $		
		f(x) = x + 4		
	b)	iii) $f(x) = x^3 + 4x$ Draw a graph of a function $f(\mathbf{P}) \to \mathbf{P}$ defind by $f(x) = x = x \in \mathbf{P}$	(05)	
	c)	Draw a graph of a function $f: \mathbf{R} \to \mathbf{R}$ defind by $f(x) = x $, $x \in \mathbf{R}$ Define the following terms with examples:	(05) (03)	
	C)	i) Onto function	(03)	
		ii) Decreasing function		
		iii) One-one function		
0.4		Add and all an add and	F1 41	
Q-4		Attempt all questions	[14] (07)	
	a)	Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 6 & 1 & 3 \\ 8 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 & 1 \\ 1 & -1 & 3 \\ 1 & -1 & 2 \end{bmatrix}$, then find $2AB$.	(07)	
	b)	<u> </u>	(04)	
		$A = \{1, 2, 3, 4\}$		
	(ه	$R = \{(1,1), (1,4), (1,3), (3,1), (4,1), (4,4), (2,3), (2,2), (3,2), (3,3)\}.$ Check whather the relation is reflexive or symmetric.	(02)	
	c)	Check whether the relation is reflexive or symmetric? $A = \{1,2,3\}$, $R = \{(1,1), (2,1), (1,3), (3,3)\}$	(03)	
		$A = \{1,2,3\}, A = \{(1,1), (2,1), (1,3), (3,3)\}$		
Q-5		Attempt all questions	[14]	
~ -	a)	$\begin{bmatrix} \cos\theta & 0 & \sin\theta \end{bmatrix}$	(07)	
		Let $A = \begin{bmatrix} cos\theta & 0 & sin\theta \\ 0 & 1 & 0 \\ -sin\theta & 0 & cos\theta \end{bmatrix}$ then show that A is an orthogonal matrix.		
		L -sin θ 0 cos θ J		
	b)	Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then prove that $A^2 = 3A - 2I$.	(05)	
		-1 20 1-	(02)	
	c)	Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$ then find $3A - B$.	(02)	
		-0 0 0-		
Q-6		Attempt all questions	[14]	
	a)	Let $A = \{x \in \mathbb{N} \mid 3 \le x < 13\}$, $B = \{x \in \mathbb{N} \mid 2 < x \le 6\}$ then find	(05)	
	• \	$A \cup B, A \cap B, A - B$ and $B - A$.	(O.F.)	
	b)	Draw a Venn Diagram for the following sets:	(05)	
		$U = \{x \in \mathbb{N} \mid 1 \le x \le 14\}$, $A = \{1,2,6,9,13,14\}, B = \{2,3,4,5,6,14\}, C = \{1,2,4,6,12,14\}$		
	c)	Define the following terms with examples:	(04)	
	c,	i) Disjoint sets	(0-1)	
		ii) Singleton sets		
0.7		A444 -114 ²	[4 4 7	
Q-7	o)	Attempt all questions In which ratio does the point $(-1,6)$ divide the line segement joining the	[14] (07)	
	a)	points $P(-3,10)$ and $(6,-8)$?	(07)	
	b)	Find distance between two points:	(04)	
		i) Distance between (0.0) and (36.15)	(- -)	

Distance between (-5,7) and (-1,3)

c) Find the value of k if the points (8,1), (k,-4) and (2,-5) are (03)collinear.

Attempt all questions **Q-8**

a)

[14] (06)

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 6 & 2 \\ 3 & 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 & 3 \\ 1 & -3 & 8 \\ 0 & 2 & 7 \end{bmatrix}$, then find $A^2 + 5B + I$, where I is an identity matrix.

- **b)** Find the area of triangle made by following points: (04)
 - (1,-1),(4,6),(-3,-5)
 - (-5,-1),(3,-5),(5,2)ii)
- c) Find 1) $\lim_{x\to 2} 5(3x + 2)$ 2) $\lim_{x\to 2} \frac{3x+1}{x+2}$ (04)

 - 3) $\lim_{x\to 0} (x^2 + 9x + 2)(3x 2)$
 - 4) $\lim_{x\to 0} \frac{e^x-1}{x}$

